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Abstract This study investigates the correlation between the upwelling microwave brightness
temperature measured by satellite radiometer and surface precipitation rate from ground radar
observations at different time lags. Results show that brightness temperatures correlate more strongly with
the lagged surface precipitation rate than the simultaneous surface precipitation rate. The lag time for
snowfall ranges from 30 to 60 min. This time lag effect has an important influence when evaluating the
satellite retrieval results relative to ground observations. For example, the falsely identified pixels can
decrease by as much as 23.88% when considering a 30-min lag time. Furthermore, the satellite-retrieved
snowfall rate shows much stronger correlation with the time-lagged surface snowfall rate than the
simultaneous snowfall rate in cold environments and for tall storms. This work implies that the time of the
level-2 swath-retrieved snowfall rate needs to shift forward when incorporated into the level-3 gridded
products.

1. Introduction
Level-2 (swath) precipitation estimates derived from passive microwave observations provide a major
information source for the widely used level-3 (gridded) precipitation data sets (e.g., NASA's integrated mul-
tisatellite retrievals, IMERG, Huffman et al., 2015, and Climate Prediction Center's morphing technique,
CMORPH, Xie et al., 2017). More than 10 spaceborne passive microwave radiometers are operational from
several international agencies (Dong et al., 2009; Edwards & Pawlak, 2000; Hou et al., 2014). Brightness tem-
perature (TB) observations from these passive microwave radiometers are combined with infrared sensor
observations to produce global high-quality precipitation estimates every 30 min. Several planned satel-
lite missions also will house radiometers suitable for precipitation estimation (Goldberg, 2018; Gu & Tong,
2015).

Many precipitation retrieval algorithms have been developed to estimate the precipitation rate from passive
microwave TB observations (e.g., Aonashi et al., 2009; Boukabara et al., 2011; Ebtehaj et al., 2015; Ferraro
& Marks, 1995; Kummerow et al., 2015; Kidd et al., 2016; You et al., 2015, 2016). These algorithms often
produce more accurate rainfall estimates. It remains challenging to accurately estimate the snowfall rate by
passive microwave radiometers, due to the large surface emissivity variation (Foster et al., 2012), the weak
hydrometeor scattering signature (Munchak & Skofronick-Jackson, 2013; You et al., 2015), the complex
radiative properties of snowflakes (Liu, 2008; Petty & Huang, 2010), and the possible contamination from
supercooled liquid water (Kulie et al., 2010; Wang et al., 2013). A current international satellite constellation
mission (Global Precipitation Measurement Mission), led by National Aeronautics and Space Administra-
tion (NASA) and the Japan Aerospace and Exploration Agency (JAXA), is designed to improve the global
precipitation measurement accuracy (Skofronick-Jackson et al., 2017). Regardless of snowfall or rainfall,
these retrievals are often assumed to be the instantaneous surface precipitation rate within the satellite
footprint at the time of the satellite observation, even when incorporated into the level-3 gridded data sets.

However, TB is not directly proportional to the instantaneous surface precipitation rate. Rather, it
encompasses the integrated effects from the hydrometeors in the entire precipitation column (e.g., Petersen
& Rutledge, 2001; Wang et al., 2018; You & Liu, 2012). Furthermore, TB at different frequencies are sensi-
tive to hydrometeors at different altitudes to varying degrees (Bennartz & Petty, 2001; Skofronick-Jackson
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& Johnson, 2011; You et al., 2017). For example, under light and moderate precipitation scenarios,
low-frequency TBs tend to be more sensitive to the hydrometeors at lower altitudes relative to the
higher-frequency channels (e.g., 166 and 183.3 ± 7 GHz). These intrinsic TB attributes indicate that pre-
cipitation rates retrieved from TB are only an approximation of the surface precipitation rate at the time
of the satellite observation. The accuracy of this approximation depends on how long it takes for the
satellite-observed hydrometeors to reach the ground. The hydrometeor taking time to reach the ground
is similar in concept to the ground soil taking time to respond to rainfall (Li & Min, 2013). Precipitation
retrieval algorithms have been developed by either linking the hydrometeor amount in the air to the surface
precipitation rate, or linking the surface soil moisture variation to the precipitation rate. Spaceborne sensors
in this study are designed to measure the hydrometeor effect.

The time-lag correlation between rainfall rate estimated from spaceborne instruments and surface gauge
observations was examined by Amitai et al. (2012) and Tan et al. (2018). Both studies concluded that the
correlation between gauge-observed rain rate and the rain rate estimated from the spaceborne sensors peaks
later in time (<20 min). They related this observation to the time it takes for the raindrops to reach the gauge
from the time they are observed by the spaceborne sensors. Meng et al. (2017) also observed time lag in
the satellite retrieved snowfall rate. They found that snowfall rates observed by the Advanced Technology
Microwave Sounder (ATMS) correlated most strongly with the surface snowfall rate at a ∼30-min lag.

As expected, this lag-time characteristics in level-2 swath data propagates into the level-3 merged data set.
Villarini and Krajewski (2007) showed that the optimal performance for Tropical Rainfall Measuring Mis-
sion (TRMM) Multisatellite Precipitation Analysis (TMPA) data set was achieved by shifting the TMPA
nominal time forward ∼20 to 60 min, when comparing with the rain gauge observations in Oklahoma.
Foelsche et al. (2017) concluded that the optimal lag time was ∼40 min when comparing the GPM IMERG
data set with rain gauge observations in southeastern Austria.

This study investigates the time lag between surface precipitation rate and TBs at different frequencies.
This analysis helps explain why the satellite retrieved precipitation rate often correlates more strongly with
surface instrument observations at a later time. This study then evaluates the effect of the time lag on the
satellite precipitation detection and retrieval performance using the surface observations as the reference.
Our analysis seeks to identify a suitable lag time for incorporating the level-2 swath precipitation rate into
the level-3 gridded precipitation product.

2. Data
The primary data are Global Precipitation Measurement (GPM) Imager (GMI) TBs, Goddard Profiling Algo-
rithm (GPROF) precipitation retrievals for GMI, and ground-based radar observations over the Contiguous
United States (CONUS) from March 2014 to December 2017. The GMI TBs at 89.0 (V/H), 165.6 (V/H),
183.31±3 (V), and 183.31±7 (V) GHz are used, with V and H representing the vertical and horizontal polar-
ization, respectively. The mean footprint resolution is ∼7 km for 89 GHz, and ∼6 km for 165.6, 183.31 ± 3,
and 183.31 ± 7 GHz (Draper et al., 2015). Hereafter, these frequencies are referred to as V89, H89, V166,
H166, V186, and V190. The near surface precipitation rate retrieved by GPROF for GMI is at the 18.7-GHz
footprint size resolution (∼15 km, Kummerow et al., 2015).

The ground reference is the precipitation rate from the ground-based radar observations at 0.01◦ and 2-min
spatial and temporal resolution (Multiradar/Multisensor System-MRMS; Zhang et al., 2016). Only MRMS
data with the radar quality index greater than 0.8 are used. The time lag is analyzed separately for rain
and snow. The precipitation phase definition uses both MRMS and the Ku-band precipitation radar (KuPR)
onboard GPM satellite to account for uncertainty in the MRMS snowfall classification (see section 3c).

Although this study assumes the MRMS precipitation rate as the “surface precipitation rate,” the MRMS
derives the precipitation rate using the lowest radar scans that are not severely blocked by terrain. Terrain
blockage can lead to MRMS-derived precipitation rates that actually measure precipitation well above the
surface. To mitigate this issue, only data with the beam bottom height less than 500 m are selected. It is
expected that use of gauge observations as the surface reference will lead to longer lag times than those
identified herein.

The ancillary parameters include the storm top height from KuPR, and the hourly 2-m air temperature
and 3-hourly temperature profile at 0.5◦ × 0.625◦ from Modern-Era Retrospective analysis for Research and
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Figure 1. Temperature profiles under four different Ku-band precipitation
radar (KuPR) and Multi-Radar/Multi-Sensor System (MRMS) precipitation
phase scenarios.

Applications, version 2 (MERRA-2; Gelaro et al., 2017). These data sets
have different spatial resolutions, and the following section discusses the
collocation scheme.

3. Methodology
3.1. Downgrade the Higher-Resolution Observations
GPROF produces the near-surface precipitation rate at the resolution of
the 18.7-GHz footprint size (∼15 km). This is taken as the nominal resolu-
tion, and the finer spatial resolution GMI, KuPR, and MRMS observations
are averaged (downgraded) to this coarser resolution.

Specifically, the native resolutions are ∼7 km for 89 GHz, ∼6 km for 166,
186, and 190 GHz, and ∼5.2 km for KuPR at nadir. We average the nearest
five ((15/7)2 ≈ 5) 89 GHz pixels, the nearest seven ((15/6)2 ≈ 7) 166, 186,
and 190 GHz pixels, and the nearest nine ((15/5.2)2 ≈ 9) KuPR pixels to
roughly match the area of GPROF foot print size (i.e., 15× 15 = 225 km).
A precipitating pixel is categorized as “snow (rain)” when all the precip-
itating pixels out of the nine selected KuPR pixels are flagged as “snow
(rain).” Otherwise, the precipitation type is judged as “mixed,” which are
omitted from this study.

The 2-min MRMS observations at the spatial resolution of 0.01◦ are down-
graded by locating the nearest MRMS observation to each GPROF pixel in

time, then averaging all MRMS observations within the 15-km nominal resolution circle. When all the cho-
sen MRMS precipitating pixels are flagged as “snow (rain),” the MRMS precipitation type is considered as
“snow (rain).” This study omits “mixed” precipitation pixels. For both 2-m air temperature and temperature
profile, we use the nearest grid to match the nominal resolution at the closest time.

3.2. Determine the Lag Time by Correlation Peak
Previous studies showed that the lag time values can differ depending on the statistical metrics. For exam-
ple, Meng et al. (2017) showed a ∼30-min lag time between snowfall rate derived from ATMS and MRMS
based on correlation coefficient, while it is ∼40 min based on the root-mean-square error (RMSE). Tan et al.
(2018) found no consistent lag time value between four different metrics (Heidke skill score, bias, RMSE,
and correlation). However, they did find that all metrics led to positive lag times, generally less than 20 min
when comparing the rainfall rates from gauges with GPM KuPR, and the rainfall rates from gauges with
GMI GPROF retrievals.

The present study uses correlations to investigate the lag time between TBs and surface precipitation rate.
The correlations between TB at each frequency (V89...V190) and the surface precipitation rate are first com-
puted at the simultaneous time. The times associated with the TB observations are increased by 2, 4,… ,
120 min, then new correlation coefficients are computed between the surface precipitation rates and TB at
each frequency. This produces 61 correlation coefficients, and this study defines the lag time as the time
when the correlation peaks.

3.3. Precipitation Phase From MRMS and KuPR
This study uses the precipitation phase as defined by both MRMS and KuPR. The KuPR was incorporated
to account for the portion of snowfall identified by MRMS that is likely to be mixed precipitation. The
observations are grouped into four categories (with sample sizes indicated) to illustrate this point. The cat-
egories include (1) both KuPR and MRMS indicate rainfall (hereafter KuPR-rain/MRMS-rain, 987,920);
(2) KuPR indicates rainfall, while MRMS indicates snowfall (hereafter KuPR-rain/MRMS-snow, 7,221); (3)
KuPR indicates snowfall, while MRMS indicates rainfall (KuPR-snow/MRMS-rain, 71,780); and (4)
both KuPR and MRMS indicate snowfall (KuPR-snow/MRMS-snow, 18,186). Figure 1 illustrates the mean
temperature profiles from the surface to 4 km above ground level for these four scenarios.

Analyses show that only 71.58% (18,186/(7,221+18,186)) of the MRMS snowfall observations (correspond-
ing to the blue and red temperature profiles in Figure 1) are judged as snowfall by KuPR at the near
surface level (∼1.5 km above the ground). This difference likely relates to the temperature inversion in the
KuPR-rain/MRMS-snow category (corresponding to the blue temperature profile in Figure 1). The precip-
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itation phase is more likely to be “frozen rain” rather than snowfall at the surface as indicated by MRMS.
Alternatively, for MRMS indicated rainfall (corresponding to the green and purple temperature profiles
Figure 1), the KuPR judges 93.39% as rainfall. The difference likely relates to the near surface temperature
being colder than the surface temperatures (corresponding to the green temperature profile in Figure 1).

Although these analyses indicate the need for future work on phase determination by both MRMS and
KuPR, that is not the purpose of the present study. The precipitation phase inconsistency between MRMS
and KuPR is avoided herein by only using the observations when MRMS and KuPR agree on precipitation
phase (i.e., only observations in KuPR-rain/MRMS-rain, and KuPR-snow/MRMS-snow categories).

4. Results
4.1. Delayed Correlation Between TB and Surface Precipitation Rate
This section analyzes the correlation between TB at different channels (V89, … , V190) and the surface
precipitation rate at different time lags for both rain and snow. Similarities between H89/H166 and V89/V166
characteristics allow the following discussion to focus on results for V89, V166, V186, and V190.

For the rainfall scenario (Figure 2a), the correlation magnitude increases for all channels to correlation peaks
at different time lags. The V89 (V186) correlation peaks ∼8 min (∼28 min) with the lag times from V166
and V190 in between. As previously introduced, the lag time differences among channels result from the
different channels sensing hydrometeors at different altitudes. Previous work showed that the 89-GHz TB
is more sensitive to hydrometeors near the surface, while the 186 GHz TB is more sensitive to hydrometeors
near the storm top, under light and moderate precipitation scenarios (Seo & Liu, 2006; Skofronick-Jackson &
Johnson, 2011). Figure 2a also reveals that the magnitude of the correlation increase differs for the different
channels. For example, the strongest correlation between V89 and rainfall rate is at ∼8 min, but not much
improvement is shown relative to the simultaneous correlation. The magnitude of the correlation increase
is greater for the other three channels, with V186 improving most from −0.24 to −0.30.

Grouping the rainfall data into storm top height categories reveals that the lag time difference decreases with
increasing storm top height (not shown). There actually is no time lag difference between all channels for
the category with storm top heights greater than 11.2 km (i.e., the 99th percentile of storm top height), which
indicates that all channels (V89 to V190) are sensitive to the hydrometeors at similar altitudes. Previous
radiative transfer model simulation experiments by Seo and Liu (2006) showed similar results. In these
intense rainfall storms, the hydrometeors likely reach ground in less than 2 min.

Figure 2b clearly illustrates different patterns for the snowfall scenario relative to rainfall. First, the lag
time is much longer for each channel. Specifically, the V89 and V186 lag times are ∼20 and ∼82 min in
this category, compared with ∼8 and ∼28 min under the rainfall scenario. The much longer lag time is
primarily caused by the slower falling speed of snowflakes relative to rain drops. Second, the magnitudes of
the correlation increases are much larger for snowfall. For example, the correlation between V186 and the
simultaneous snowfall rate is −0.12, while it increases to −0.30 at the 82-min lag time. Recall that under the
rainfall scenario the V186 correlation only increases from −0.24 to −0.30.

4.2. Dependence on Environment Temperature and Storm Top Height for Snowfall
The environmental temperature and storm top height can affect the lag time in the snowfall scenario. The
10 temperature values nearest the surface (i.e., surface to ∼1.5 km, Figure 1) are averaged to provide an
indicator of the temperature influence on the time lag effect.

Figures 2c and 2d show the correlation between different channel TBs and surface snowfall rate at dif-
ferent time lags for average temperatures less than the 50th (270.6 K) and 25th (267.4 K) temperature
percentiles. At temperatures below 270.6 K, the correlation variation features are similar to those shown for
all data (Figure 2b). In contrast, the correlation magnitudes increase much more at the colder temperatures
(<267.4 K, Figure 2d). For example, the V186 correlation increases from −0.02 for the simultaneous surface
snowfall rate to −0.33 at the 46-min lag time.

The data are next subdivided into groups conditioned on the storm top height. For storm top greater than
3.9 km (50th percentile; Figure 2e) the correlation variation features are similar to those from all data
(Figure 2b). However, for storm top heights greater than 4.6 km (75th percentile; Figure 2f) the lag times for
all channels are much larger than those for all data (Figure 2b). The magnitude of the correlation increase is
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Figure 2. (a) The correlation between TB at different channels (V89, V166, V186, and V190) and the MRMS surface
rain rate from the simultaneous time to 120-min time lag; (b) same as (a) except for snowfall; (c) same as (b) except the
temperature is less than 270.6 K; (d) same as (b) except the temperature is less than 267.4 K; (e) same as (b) except the
storm top height is larger than 3.9 km; and (f) same as (b) except the storm top height is larger than 4.6 km. The
threshold values (270.6 K and 267.4 K) are the 50th and 25th percentiles of all temperature observations. The threshold
values (3.9 and 4.6 km) are the 50th and 75th percentiles of all storm top height observations. TB = brightness
temperature; MRMS = Multi-Radar/Multi-Sensor System.

much larger for V166, V186, and V190 for storm top heights greater than 4.6 km (cf. Figure 2f and Figure 2b).
Similar analyses on rainfall observations revealed no clear dependence on different temperature or storm
top height characteristics.

4.3. Impact for Precipitation Detection Evaluation
The time lag effect can lead to instances where the radiometer retrievals produce surface precipitation at the
time of the satellite observation, while no simultaneous precipitation is indicated by the surface instruments.
When evaluating the radiometer detection performance relative to the surface observations these pixels are
classified as “false alarms.” Since these instances are caused by the different observation characteristics of
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Table 1
The “False Alarm” Pixel Counts Relative to MRMS at the Simultaneous Time, and When
Considering Three Time Lag Windows (i.e., 10, 30, and 60 min)

0 min 10 min 30 min 60 min
Falsely detected pixel No. 1,425,917 1,218,186 1,085,421 988,057
Reduced by percentage — 14.57% 23.88% 30.71%
False alarm ratio 34.56% 29.53% 26.31% 23.95%

Note. The false alarm ratio is also provided under each situation, which is defined as
the falsely identified precipitating pixel number in GPROF-retrieval result divided
by the total precipitating pixel number in GPROF-retrieval result. GPROF = Goddard
Profiling Algorithm; MRMS = Multi-Radar/Multi-Sensor System.

different instruments, they should not be classified as “false alarms.” These “false alarms” occurrences are
next investigated by considering the time lag effect.

Data from the GMI GPROF retrievals and the MRMS ground radar observations are used to investigate
this phenomenon. The GPROF retrievals are first classified as “false alarms” relative to the simultaneous
MRMS observations, and then reclassified relative to the MRMS at times lags of 10, 30, and 60 min. The
GPROF pixels classified as “false alarms“ at the simultaneous time are reclassified as “correct” detections if
MRMS observes precipitation within this time window. For the 10-min lag window, the GPROF retrievals
are compared to five MRMS observations (i.e., 2, 4, 6, 8, and 10 min). If any of these five MRMS observations
are associated with precipitation, this pixels is reclassified as a “correct” GMI detection.

Table 1 shows the results of this analysis. The 10-, 30-, and 60-min time lags reduce the “false-alarm” pixel
count by 14.57%, 23.88%, and 30.71%, respectively. As expected, the false alarm ratio also decreases for longer
time lag windows. Tan et al. (2018) noted a similar feature. Similar analysis is conducted by grouping data
into snowfall and rainfall conditions. Although the numerical values differ under snowfall and rainfall, the
degree of the false pixel number reduction and the false alarm ratio reduction is similar. This reduction of
false alarms and false alarm ratio highlight the importance of considering the time lag effect in evaluating
the level-2 retrieval results.

4.4. Impact for Precipitation Intensity Evaluation
The time-lag effect on the precipitation intensity is next evaluated when both GPROF and MRMS detect
precipitation at the time of the satellite observation.

Figure 3a shows the correlation between GPROF-retrieved rain rate and MRMS rain rate. The correlation
increases marginally up to a ∼6-min lag time, and then decreases sharply for longer lag times. This indi-
cates that the time lag effect is very weak under the rainfall scenario. Thus, the correlation between the
simultaneous satellite-retrieved rainfall rate and surface rainfall rate is safe to use as a performance indicator.

The increasing correlation with increasing lag time is much more evident under snowfall conditions
(Figure 3b). Most importantly, the correlation peaks at the ∼20-min lag time (Figure 3b). The increasing
correlation with increasing lag time is even more evident under cold temperature (Figure 3c) and for taller
storms (Figure 3d). For example, for temperatures less than 267.2 K and storm top heights greater than
4.6 km, the lag time is ∼30 min and the correlation increases from ∼0.20 to ∼0.46.

The larger correlation increase and time lag under snowfall condition implies that the weak correlation
between the retrieved snowfall rate from radiometers and the surface-observed snowfall rate may not indi-
cate poor snowfall retrieval performance (especially in cold environments and for tall storms). Thus, the
time lag effect should be considered when evaluating the performance of the radiometer-derived snowfall
retrievals in high latitudes.

It is important to note that GPROF uses multiple channels to retrieve the surface precipitation rate. The lag
times based on TB at a certain channel (Figure 2) may differ from the lag times based on the precipitation
rate retrievals (Figure 3). Regardless, analyses based on both TBs and precipitation rates retrieved from TBs
show clear time lag effects relative to the surface observations.

YOU ET AL. 8420



Geophysical Research Letters 10.1029/2019GL083426

Figure 3. (a) The correlation between the GPROF-retrieved rainfall rate and the MRMS surface rainfall rate from the
simultaneous time to 120-min time lag; (b) same as (a) except for snowfall; (c) same as (b) except the temperature is less
than 270.6 K and the storm top height is greater than 3.9 km; (d) same as (b) except when the temperature is less than
267.4 K and storm top height greater than 4.6 km. The threshold values (270.6 K and 267.4 K) are the 50th and 25th
percentiles of all temperature observations. The threshold values (3.9 and 4.6 km) are the 50th and 75th percentiles of
all storm top height observations. GPROF = Goddard Profiling Algorithm; MRMS = Multi-Radar/Multi-Sensor System.

5. Conclusions and Discussions
This study investigates the correlation between TB and surface precipitation at different time lags using
observations from GMI and the MRMS from 2014 to 2017 over CONUS. The GPROF-retrieved precipitation
rate for GMI is also used to show the time lag effect on precipitation retrieval evaluations.

Delayed correlation is evident for both snowfall and rainfall situations, although the snowfall conditions
resulted in larger magnitude correlation increases and longer lag times. This lag time and correlation mag-
nitude increase was shown to depend on the environmental temperature and storm top height. The lag time
and the correlation magnitude increase were larger for colder environments and taller storms. The influ-
ence of the time lag effect on precipitation detection and intensity evaluations also was examined. Results
revealed that use of a 30-min lag time window can decrease “false alarms” by 23.88%. A very weak time lag
effect was found for the rainfall intensity evaluation, with the largest correlation between the retrieved rain
rate and the surface rain rate at (or very near) the simultaneous time. Alternatively, a clear lag time effect is
observed under snowfall conditions. The correlation between the GMI-retrieved and MRMS snowfall rates
peaked at a ∼20-min lag time. The correlation magnitude increase and longer time lag were most evident in
colder environments (<267.4 K) and for taller storms (>4.6 km).
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This study shows that the lag effect must be considered when evaluating the radiometer detection perfor-
mance relative to surface observations. As was shown, the hydrometeors may not reach the ground at the
time of the satellite observation. These pixels should not be classified as “false alarms” since they directly
relate to the different nature of the satellite and ground-based measurements. Caution should be exer-
cised when using correlation as an indicator for evaluating the snowfall retrieval result from radiometers.
The correlation can be very weak at the time of satellite observation, while the correlation can increase
markedly when considering the lag time effect (especially in cold environments). This study implies that the
radiometer-retrieved snowfall rates may need to shift forward (e.g., 30 min), especially in cold environments
and for tall storms, before integrating the retrieval results into the level-3 merged products.
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